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The absorption of electromagnetic waves in molecular crystals at low temperature has been studied
using the Green’s-function method. The spin dependence of the excitations created by photon absorption
has been explicitly considered. In the Hartree-Fock (HF) approximation and in the absence of the radiation
field, the poles of the exciton Green’s function consist of two frequency modes corresponding to the singlet
and triplet exciton fields, respectively, and propagate through the medium independently; beyond the
HF approximation, the two modes are no longer independent. The spectral function for the photon field
is found to consist of the superposition of symmetric and asymmetric Lorentzian lines. General expressions
for the energy shift and spectral width are derived. An example is worked out for the resonance Raman
scattering of triplet excitions, where the incident photon becomes a polariton and then decays into two
triplet excitons. Physical processes, where a singlet exciton decays into two triplet excitons, as well as the
excitation spectrum of triplet excitons, have been studied in detail.

I. INTRODUCTION

HE scattering of electromagnetic waves in molecu-
lar crystals has been recently considered! by
calculating the photon Green’s function and, conse-
quently, the polarization operator of the crystal. The
spectral function for the photon field has been derived
and an extensive investigation of the polariton-exciton
and exciton-exciton interactions has been done. How-
ever, in this study the effect of the electron spin has
been completely neglected and, hence, only excitations
with spin-allowed transitions have been considered.

In fact, for most molecular crystals, the valence bands
are filled with electrons having opposite spin alignment.
Therefore, upon excitation each created electron-hole
pair may have its spin component either up or down.
The spin degeneracy is removed by the intermolecular
interactions with the result that the created excitations
are not only the spin-allowed but also the spin-forbidden
ones.

An attempt is made here to discuss the excitation
spectrum and line shape of absorption bands at low tem-
perature for the physical process, where electromagnetic
radiation is absorbed in a molecular crystal. The crystal
is assumed to consist of neutral molecules in an undis-
placed lattice with the valence bands filled with elec-
trons having antiferromagnetic spin alignment. The
motive of the present study is twofold. First, most of
the observed exciton absorption spectra manifest asym-
metric line shapes?? and, second, the concern about the
recently observed spectra in organic solids, which are
attributed to the singlet-triplet and triplet-triplet
exciton-exciton interactions, respectively.*=7 It has been
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pointed out?? that at finite temperatures the asym-
metry of the absorption bands is due to the polariton-
phonon® or the exciton-phonon interactions.?? On the
other hand, a recent investigation?® on the optical excita-
tion spectrum of interacting polariton waves in organic
solids at low temperature has revealed that, in general,
the spectral function for the process in question is
broadened asymmetrically through the polariton-
polariton interactions.® Hence, for pure crystals and low
temperatures, the dynamic behavior of the polariton-
exciton and exciton-exciton interactions will govern the
shape of the absorption bands.

The problem is formulated in Sec. II, where the total
Hamiltonian is diagonalized via the Green’s-function
method. General expressions for the exciton and photon
Green’s functions are derived, respectively. The spin
degeneracy is removed by the intermolecular interac-
tions with the result of creating two excitation fields,
which for convenience (though not very accurate), we
shall call the singlet (4) and the triplet (—) exciton
fields, respectively. The polarization operator for the
photon field is coupled only through the Green’s func-
tion, which describes the singlet exciton field.

The excitation spectrum is discussed in Sec. III in
successive approximations. In the Hartree-Fock (HF)
approximation and in the absence of the electromagnetic
field, there are two frequency modes corresponding to
the singlet and triplet excitons, respectively, which
propagate through the crystal independently. The
polariton spectrum in the HF approximation is identical
to that described in the literature.>—10

A general discussion for the excitation spectrum
caused by photon absorption is given in Sec. IV. The
spectral function for the photon field is found to con-
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1 ABSORPTION OF ELECTROMAGNETIC WAVES IN MOLECULAR: - -

sist of the superposition of symmetric and asymmetric
Lorentzian lines provided that certain conditions are
satisfied. It is shown that when we go beyond the HF
approximation the singlet and the triplet exciton modes
are no longer independent. As an example, the reso-
nance Raman scattering spectrum of triplet excitons is
considered. This is the polariton-triplet exciton reso-
nance spectrum, where a polariton decays into two
triplet excitons; it includes radiative processes as well
as those resulting from the correlation between the
radiation field and the intermolecular interactions. The
corresponding resonance spectrum, when a singlet
exciton decays into two triplet excitons, and vice versa,
is discussed.

The excitation spectrum of triplet excitons is exam-
ined in Sec. V. The Raman resonance spectrum occurs

= E0+ Z A“b,mt(k)b,w(k) + Z
k,u,o
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whenever a triplet exciton decays into a triplet exciton
and a polariton; a detailed discussion for the process in
question is given. Far from resonance, the scattering
amplitudes are derived for the physical process where
a triplet exciton undergoes a transition to another
triplet state, while a polariton is emitted.

II. FORMULATION OF PROBLEM

We consider a simple model of a molecular crystal,
consisting of V neutral molecules in the static lattice of
volume V, with one molecule per unit cell and with the
valence band filled with electrons having opposite spin
components. In a tight-binding model of a molecular
crystal, an exciton may be viewed as an electron-hole
pair tightly bound to one another, and the total exciton
Hamiltonian may be taken as!*1!

T gt 0® ' (Kb () by ()

JOO,MM’d’dl(k)[bw(k)bn’a' ( “k) ""buvT(k)bu’ o’ T(—k)]

Z ]Ou,u’mﬂ’”I(k)[buUT(Q)b#’0’(k)bMW(q"‘k)

VN k.q.0,0" 4,8 m

+me(Q+k)bu'v"(k)bw(Q)]—f- kz)\ ckBt(&)Br(k)+3iw, 2

1wy (fkn.kﬂu'(qﬂ\)A"'"
ATI/Z k,q,\,p,p0’ 0 C(]
where

Ay=AL+(2/N)

) bue(R)Ba(k)

<f0u(ky>\)Au> 12

kA u,0 C

) buot ()b o (ke —q)BN(Q) +5e0? Zd; (k) B (k)Br(K), (1)

Z Juwrwu” (@)

q,u’ (' 5#p)

buo(B)=buo( —K) =bus! (k), Br(k)=Pr(k)+Bri(k), Awu=Aw—4,, h=1.

The coupling function Jop,u0° % (k) consists of the
Coulomb minus the exchange matrix elements between
the two molecules located at the lattice sites n and
m (#n) with position vectors r, and Iy, respectively,
ie.,

]On’.uov’a,(k)

= 3" [{n0oc,mu'c’ | Vo m|nuomos’)

(n—m)
—(n0o;mu/c"’ | Vo m|mOe’ ,nue) ] explik- (tn—1m) ]
= VO#"AOU'V’(k) - VOM’,Ou”’”'(k> . (Zb)

The first five terms in (1) represent the bare exciton
spectrum, the sixth term describes the free transverse
electromagnetic field, while the exciton-photon inter-
actions are expressed by the seventh and eighth terms;
finally, in the last term we have neglected higher-order
processes corresponding to photon-phonon scattering,
because these terms become important only in the x-ray
region of frequencies.!"'! The compound index y indi-

(2a)

cates the exciton band, the corresponding molecular
term and the kind of mode, transverse or longitudinal,
and o is the spin component of an electron (T or |).
A,° is the energy of excitation of the uth exciton band,
that is independent of the wave vector k, while the
coupling functions fou(k,\), fiu,k—qw (q,\), and w, denote
the oscillator strengths for the allowed transitions in
question and the plasma frequency, respectively. Ex-
plicit expressions for A,° the oscillator strengths and
w,p are given elsewhere.’® The exciton operators b, (k)
and b,,(k) create and annihilate an exciton in the (k,u)
excitation band and satisfy the commutation relation

[bue(k),b, aT(k,)]—— = (Mx0s ~Micps) Ok’ Opup S0

where 70, =00 0kos aNd iue =arpslaryu, are the occu-
pation numbers for the holes (valence band) and the
electrons in the (k,u) and excitation band, respectively.
B\(k) and Ba(k) are the creation and annihilation
operators of photons with wave vector k and polar-

L. N. Ovander, Fiz. Tverd. Tela 3, 2394 (1961) [English
transl.: Soviet Phys.—Solid State 3, 1737 (1962)].
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ization N\ (=1, 2), representing the two possible values
of polarization perpendicular to the direction of prop-
agation k. Since we are concerned with the low-tem-
perature spectrum of the Hamiltonian (1), it will be
sufficient to assume that the exciton operators satisfy
Bose statistics. In (1), we have retained only cubic
anharmonic terms with respect to the exciton operators,
while from the quartic terms we kept only the small
correction that appears in the last term of (2a). For
notational simplicity, only crystals having one molecule
per unit cell are explicitly considered. The generaliza-
tion to the case of crystals with many molecules per unit
cell presents no problems; hence, physical effects like
the Davydov splitting, etc., shall not be considered.

To study the excitation spectrum of (1), we intro-
duced the retarded exciton Green’s function!? in a
matrix form

Gu(k; t—1")= (Ao (&,)1); Aot (&)1)))
= —if(t—1"){[A o (1), 4 ..t (&,t")]-),

with the operator 4,,7(k,!) defined as

but" (k1) bur(—K, f)J
, o (3b)
ble(k;t) b;l.lr(_ky t)

(3a)

A“,T(k,t) = [

where the angular brackets denote the average over the
canonical ensemble appropriate to the total Hamiltonian
3¢; the factor 6(f) is the usual step function, and the
operators b,,' (k) and b,,(k) are in the Heisenberg repre-
sentation. In what follows, the time arguments of the
operators have been suppressed for convenience. The
Fourier transform of G.(k;¢—t) with respect to the
argument ¢ satisfies the equation of motion

1
wG“(k; w) :(5_>([A#U(k):AMa“[(k):]—>t=L’
+{([4re(k),5¢]-; Auoi(k))).  (3c)

Using (1) and (3c), the equation of motion for the
exciton Green’s function G,(k; w) is found to be

GO (k; )Gyl w) = I+ ((Fu(k); 4" (K))). (4)

The unperturbed Green’s function G, (k;w) is given
by

GO (k; w)
w—R —-R -5 =8
1| —-R —w—R =8 -S
= a - ) (Sa)
2| —S -S w—R —R
=S -5 —R —w—R

12D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [ English transl.:
Soviet Phys.—Usp. 3, 320 (1960)7].
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where

R=Ry(w) =Au+T op,u0” (k) +Li(w)
R= Ri(w) =Jo0,uu”"" (k) — Lic(w) ,

S=Sk(@) = Vouuot+(K)+Li(w), (5b)
S=S8(w) = Voot (k) — Li(w) ,
Li(w) = (30,)2 fou(lk,N)Au(w?—ck—aw,?) L.
7N
The function F,.(k) is
Fu(k)=Bu(k)+Cu(k)+ U,(k), (5¢)
where .
B,(k)= Wp 5 <fku,k—qu’(q)‘)Au'u)”2
VN anw cq

XB(k—QI/, q)\) )
Cuk)=(1/vVN) ¥ A(@)C(q, p1, k—aqu’),

_ [T (&) Ju(—k, —q)

UuT(k)=(1/\/N)%, {J,M(k,q) P J ,

Bi(k—qu', Q\) =[b,11(k— )1 (@)
—but (k—q)B(Q) b 1(k—q)BrT(q)

) —bui(k—q)Br@)], (s5d)
Ct(qui, k—qu)

burt (k= @)t (—q)

= | —bui(k—Q)but(—q)  bus (B—Q)bui () | ,
=i (k—q)bu (—q)

Ju@)= 2 {Jow,uut (@but(k—q)

X[bu1(@) +buros (=) J+T o uin”
X (_k)b#wT( _Q)b#' v(k_q)} )
Ak(“’) =°"p2 Z [f(m()%{a)‘)fqm.k—qu’(_k7>‘)

XAA iy MM (w2 =R —wp?) 1

Considering the equation of motion for the Green’s
function {((F.(k); 4,,'(k))) with respect to the argu-
ment ¢ and substituting the resulting expression into
(4), we obtain the Dyson equation

[Gu @73 (k; w) ~Pu(l; @) JGu(k; w) =1, (6)
where the polarization operator P,(k;w) is given by
Po(k; w)=P,(k; 0)[I+G, O (k; 0) Pu(k; 0) I (7)

and

Py(k; w)= (2m)*(Fu(&); F ' (K))) . ()
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In the range of frequencies w far from the zeros of the
denominator appearing in the expression for the polari-
zation operator (7), we may expand the denominator of
(7) in a power series of P,(k;w) as

Pu(k; w) = Pu(k; 0)[1—G, @ (k; w)Pu(k; w)+---]. (9)

In what follows, we shall retain only the first term in the
expression (9). Then Dyson’s equation (6) becomes

(GO (k; w) —Pu(k; 0) 1Gu(B;0=1.  (10)

Taking the diagonal and nondiagonal elements of
(10), we derive the expressions for the Green’s
functions

Qﬂﬂ:Z(k)w) = Q#:I:(k7w>gﬂ:i:(k:w) ’
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(Bt (&); b, 1(K)))
= (b (k); b (k)))
_ 1 ( Qi (kyw)
27 \w?— Q4 2(k,w)
((But (k); b 1(K)))
=((bu(k); buri(k)))
1 ( Gulke) D (ko) >
2\ = Qi 2(kw) W= 2kw)/

Qu-(kyw)
w2—9“42(k,w))’ an

where the following notation has been used:

(12)
Qs (k) =0, (k) +{(us(k); duri(k))), (13)
Qs (B,0) =By (B) (0 (K) 30,1 (K))) +2(11) Li(w) (14)
‘:’M:i:(k) :AM+J0u.u0(i>(k)+JOO,Mu(i)(k) ) (15)
é’uﬂ:(k) :Au+]0u,u0(i)(k) —]00,,‘,‘(1)(1{) ’
]ou,uo(i)(k)EJOM,MOG'U(k)i VO#,MOT'L(k) 3 (16)
Wy Jrewe—qu (N A\ V? ~ 1
dus (k)= 2 <_—“*‘—“‘> fwr(k—q)Br(q)== 2V ow e P (@Y (@OQXw 2 (k—q)
VN axw cq 24/ N a.u’.m
FJ 0w u1s QX (O X (K~ +3 0w S (= k) [ X+ (@)X (K —Q) X, (@) X7 (K —q)
"f_EMH‘T(q)EM':E(k—q)+£#1‘j(q)£ﬂ':¥:(k_q)]}7 (17)
1wy S kqur (@A) A\ M2 ~ 1
oﬂi(k) = Z ( ) Xn':t(k—Q)ﬂx(Q):E Z {joﬂ"ﬂlﬂ(+)(q) Eu’:l:(k_q)xuu—(Q)
VN anw cq 2/N aw'm
+J0n'.uw(_)(q) EM“F(k_Q)Xm——(q)+%Ak(w)[xul+(Q)Xﬂ’i(k_Q)+Xu1—(q.)xu'4:(k"q)
+E#1+T(q)gﬂ’i(k_Q)+E#1—T(q)£#':i=(k_q)]}; (18)

Eus(B) =D ()20, ()5 X (1) = [0 (1) b, (=) J= [, (k) + b T(—K) ],

From (11) and (12) we derive the expression for the
Green’s function

Gur(kyw) = ((£us (k); £ui(K)))
2 QH:{:(k7w)
I (19)

T o= (k)

which shall be needed later.
The Dyson equation for the photon Green’s function

D(k; w)=((Ar(k); Br' (k)))

is easily derived by means of the Hamiltonian (1) in the
form of

D(k; )= Doo(k; w)[14TI(k; w) Doo(k; ) ], (20)
where Dgo(k,w) is the unperturbed photon Green’s

function
Dyo(k; w)= (ck/m)(w2—c%k2?—w,?)™T,

and the scattering function II(k; w) for the photon field
is given by

1(k; w) = (r*wy,”/ ck)Z; Jou(BEN)A g0 (k5 ). (21)

In deriving (21) we have retained only terms which are
linear with respect to the exciton operators. The polari-
zation operator, TI(k;w), and the scattering function
Ii(k; w) are related by

11 (k; ) =TI(k; &) [ 1+ Doo(k; w) M (kyw) I
or

O(k; w)=Ti(k; w)[14+D(k; ) T(k,w)].
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III. EXCITATION SPECTRUM

We shall now discuss the excitation spectrum of
molecular crystals in successive approximations by
using the general expressions for the Green’s functions
derived in the previous section.

A. HF Approximation

The unperturbed exciton spectrum is described by
the Green’s function (5a). In the range of wave vectors
k, where retardation may be neglected, Lyx(w)=0, the
bare unperturbed exciton spectrum is derived from the
expressions (11) and (12), which in the HF approxima-
tion give

(Bt (K); Dt (k) ©
=B (k); b (k)))©®

17 ou(k) (k)

N ’< + - > ) (223.)
2m wz—w""‘Q(k) NQ—wﬂ-2(k)

(Bt (Kb, 1(k)))©

=((bu(k); b i(k)))©
1 < (k) 50 ()

PR - ) . (22b)
2m\e? —awuP(kK) @’ —awu (k)

where the energies of excitation w,. (k) are defined as
wut"(K) = G2 2(K) — 0y *(K) . (23)

Considering the expressions (15) and (16), we conclude
that the energy w,(k) arises from Coulomb as well as
from exchange interactions, while w,_(k) only from ex-
change interactions between the electron-hole pairs;
hence, w,. (k) and w,_(k) are the energies of excitation
for the singlet and triplet excitons, respectively. The
expression for w,, (k) is identical to that found in the
literature.®+1%:13 Thus, as should be expected, in the HF
approximation, the two energy modes w, (k) propagate
in the crystal independently. In this approximation, the
Hamiltonian which gives rise to the excitation spectrum
described by (22a) and (22b) may be written as

3C0= Ey+(3C°)+3¢,°4-3¢_°, (24)
where
<3C0> 2% kz {[wu+(k)’7n+(k) —Au]
Flow(K)n—(k)—4,]}, (25)

with 7,4 (k)= cothifw,. (k), is the average energy of the
exciton field. Here 3= (Kp7T)~!, where Kp is Boltz-
mann’s constant and 7 the absolute temperature. The
expression (25) is derived from (1), (22a), and (22b) in
the usual way,!®13 and consists of the sum of the con-
tributions of the two independent fields; the first term

13 C. Mavroyannis, J. Chem. Phys. 42, 1772 (1965).
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in (25) is in agreement with that derived in the litera-
ture.!® Contributions arising from the mixing of differ-
ent bands also can be included in the expressions for
wu(K).13 In (24), 3¢,° and 3C_° describe the singlet and
triplet bare exciton spectrum, respectively, and they
are given by

3 =3 ?d [ous () X,up T(R)X (k)
Fdus(K) Eur (k) £un (k) ].

We note that the singlet and triplet exciton fields are
independent from one another, i.e., the operators
(44,Xuy) and (£,—,X,) commute, [£,4 (k) £, (k)] =0,
[Xu~+(k):xu— (k) :l— =0.

(26)

B. Polariton Spectrum (HF Approximation)

When Ly(w) is taken into consideration in the expres-
sion (5a) for G, (k; w), then the corresponding expres-
sions derived from (11) and (12) in the HF approxima-
tion are

(Bt (k) ; bat(k))),©
= (P (K); 5,1 (1)), @

=il Ok;0)+g-Ok; )], (27a)
((Pur (B); B, (k) )), @
= (b (K); DT (K) ), @
=il Ok;0) —g.- O (k;w)], (27b)
where ( " o ()
2 02—k —wp?)Wuy
- O(k§ w) = y 28
o r [ ) i) k]
2 o, (k)
gk )= ——— ( (29)

7 [0 —w, (k)]

and the frequency and wave-vector-dependent index of
refraction 7o(k,w) is

nOZ(k:w> = 1+0[0(k,w) ’ (303)
Op k7>\)
ol =203 LI
Coe e (30D)

. Jou(BN) A
(BN = ———— .
ol Gy (k)

In this case, we have again two modes, the polariton
mode and the triplet exciton mode, propagating in the
crystal independently. We note that the electromag-
netic field is not coupled with the triplet exciton field
described by the Green’s function g, %(k; w). Substitu-
tion of (28) into (21) and (20) yields

Dy(k; w) = (ck/m)[wno*(kK,w) —c’k* ], (31a)

The expressions (28), (30), and (31a) are identical with
those derived in previous studies.!'?:1° In this approxi-
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mation, the crystal Hamiltonian may be written in the
polariton representation as

3,0 = o+ <5cp0> "H}C—O‘*‘kz: wp(k)pr(k)g‘p(k) . (31b)

The polariton energy w,(k) is determined by the pth

root of the equation
wno*(R,w) —c%k?=0, (31c)

and ¢,(k), ¢,(k) are the polariton creation and annihila-
tion operators. (3C,°) is the average energy of the polari-
ton field and its explicit form is given elsewhere.!10

IV. ABSORPTION OF ELECTRO-
MAGNETIC WAVES

The Green’s functions g, (k; w) given by (19) may be
written as

2 (== w,?) 0 (kw)

Bk T —ow]
gu—(K; )= E#%il‘jl_ (33)
[0 = 2, 2(50)]
where
8y (1,0)= Oy (5.0) 0 () (34)
B (8,0) = 0, () ((0,6(); 0,1 R),  (35)

and the frequency and wave-vector-dependent index of
refraction n(k,w) is defined by

Wy wp? k)AL, (kw)
) =1 2 g2 LR

w w? er G i(k,w) —w?

Substituting (32) into (21) and making use of (20), we
obtain the photon Green’s function as

D(k; w)= (ck/m)[wn?(k,w) —c2%?]. (36b)

We remark that when the triplet exciton field is com-
pletely ignored in the expressions for 9*(k,w), then the
Green’s functions (32) and (36a) are reduced to those
derived in I. The scattering function II(k; w) is related
to the dielectric function e(k,w), for an isotropic
medium, by!

w[e(k,w) —n."]= —(ck/m)Il(k; ), (37a)

where
Nol=1—w,2/w?.

If we make use of (21), (32), and (36a) the expression
(37a) becomes

( e(kyw) "_77002 )_ D(k; w)
P(Kw)—n.2)  Doo(k;w)

Equation (37b) indicates that the dielectric function is
equal to the square of the index of refraction only when

(37b)
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the perturbed photon Green’s function is replaced by
its unperturbed expression. In any other case, it is given

& [r20k) —n.7]
w2 772 kyw _noo2
e(k,w) =n’(kw) — ——————.  (37¢)
Lo™n*(k,w) —c**]
We refer to I for details concerning the expression (37¢).
Having derived the general expressions for the Green’s
functions given by (32), (33), and (36b), we will discuss
now specific physical processes caused by photon
absorption.

A. Photon Field
The spectral function for the photon field is
J(kw)=—2(ef*—1)"1ImD(k; w). (38)
Substituting the imaginary part of (36b) into (38), we
obtain

2ck
T (le0) = —(epe— 1)

™

7M+(k,w) + [w2 Re?l2(k:w) —c% 2:")7“4.(1{,(.0)

, (39)
[«* Ren’(k,w) —c** PP+ v (kw) 1°
where
Yt (,0) =a(k,w)w, (k) Tmyy (ko)
F (0 =’k —wp)Pur (k) ,  (40)
Pt (,00) = [ReQyy (k) Tm G,y (kw)
+Refy (k,w) Im,y (kyw]
XL (kyw) =11, (41)
i) =20 5 42)
w ey 2(R,w) —w?
euz2(k,w) = ReQup (K,w) Reyy (Kyw)
—Im@us (ko) ImGus (k). (43)

The expressions for ReQ,, (kw), ImQ,, (kw), and
Ref,, (k,w) Im, (kw) are determined by the real and
imaginary parts of (13) and (35), respectively.

The spectral function (39) consists of two terms. The
first term describes an absorption band which is a sym-
metric Lorentzian line peaked at frequencies w=w,(k),
where the energy of excitation w,(k) is determined by
the pth root of the secular equation

? Ren?(k,w) —c%2=0, (44)
provided that in the neighborhood of these frequencies
the functions v, (k,w) and Ren?(k,w) vary slowly with
w. In this case, the half-width of the absorption band is
of the order of |y, (kw,(k))|/2ck in energy units, pro-
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vided that the frequency w=uw,(k) satisfies the argu-
ments of the § functions appearing in the expressions for
Im®,, (k) and Im{,,(kw), a condition that is re-
quired for y,(k,w,(k))£0. The second term in (39)
represents an asymmetric Lorentzian line for frequencies
w#w,(k). Away from the center of the peak w=w,(k),
the effect of the second term in (39) is to broaden the
profile of the absorption line and, hence, the spectrum
of (39) may be thought of as consisting of the super-
position of symmetric and asymmetric Lorentizian lines.
The maximum frequencies of the function (39) are deter-
mined from the solutions of the equation

: <7u+<k,w)+[w2 Re"2(k"°)—c%ﬂw(km):O. (45)

3™\ [ Ren?(l,w) — 2P+ [y o (o) T2

dw?

If we make the assumption that at some frequencies
w=vg,, which are solutions of (45), the functions
Yt Eyip)=7v and 9,,(kyx,)=% may be considered as
constants then (45) gives

vio* Ren(Kvp) == (v/9)[ =1/ (14991 (46)

The solutions of Eq. (46) determine the frequencies vy,.
At w=vyx, and 97#0, the spectral function is

J(Rpi,)= (ck/7)(ePkr—1)"1
XY/ [—1Ev/ (1492 T,

where the height of the absorption band is given by
ck(P*/v)[—1£v(A+99) 17,

while the energy half-width Wy (»y,) is of the order of
| Wi(vio) | = (v/93[— 12/ (A+92) ]/ ck.

We remark that the function 9, (k,w) has been over-
looked in I, and only the first term in (40) has been con-
sidered. In fact, the function 9,;(k,w) causes not only
asymmetry in the spectral line of (39) but also makes
a contribution to the expression for v, (k,w) in (40). To

(47)

(48)

(49)

ImQ,(k,w) =Im (¢ (K) ; $utt(K))),

I & (o) = T8 (k) ; 0 1(K)))
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see this, we rewrite v, (k,w) as
Yt (kyw) =a(kw)wur (k) Im, (ko)

dw?
+( 1-= Ren2(k,w)>[ReQn+(k,w) Il (k)

+Refu (k,w) Imy (kw)].  (50)

The spectral function (39) can be used to describe the
excitation spectrum arising from the physical process of
polariton-polariton scattering, where the incident
photon or polariton decays into two polaritons. In this
case, the operators X, (k), £.,(k), and By(k) appearing
in the expressions for Q,, (k,w) and &, (k,w), after dis-
carding all terms that correspond to the triplet exciton
field, have to be transformed into the polariton repre-
sentation. Then the resulting expressions for the Green’s
functions are easily evaluated in the HF approximation
by means of the polariton Hamiltonian (31b). The final
result, for the excitation spectrum corresponding to the
resonance Raman scattering of polaritons, is identical to
that derived in our earlier work.?

In the limiting case when the functions v, (k,w) and
Ju+(K,w) go to zero, then the spectral function J(k,w)
as a 6 function distribution, i.e.,

J (ko) = (2ck) (ef — 1) 18 wn2(k,w) —c2k?],

Yut (K,w) — 0 and 9., (k,w) — 0. In this case the excita-
tion spectrum is determined by the roots of the equation

wn?(k,w)—c%k?=0,
where 7%(k,w) is given by (36) and is a real quantity.

B. Resonance Raman Scattering of Triplet Excitons

We wish now to study the resonance process, where
the incident photon decays into two triplet excitons. In
this case the functions v,(k,w) and 9., ‘(k,w) are given
by the expressions (40) and (41), where the functions
ReQ, i (kw) and Re,, (k,w) are determined by the real
parts of (13) and (35), respectively, while the expres-
sions for Im@,, ‘(k,») and Im&,,'(k,w) are

¢M+t(k) = (1/4\/1\’7) Z {]Ou' JBEL &) ( _k) [Xm—T(q) XM’—(k —‘Q) + Eul—f(q) Eu’—(k _Q)]

q,u’,pm1

Ou (&) =(1/2v/N) 2 A()[ X H(OXw (k=) +£-1(@) Ew—(k—q) ]

q,p,pm

(51)

(52)

+2]0u:’“1,,(")(q)X,,l_T(q)X#r_(k——-q)} ’ (53&)
+(1/2\/N) Z JOM'ymn(—>(Q)Eu'—(k_q)xnl~(q) . (53b)

q,u1,m’

The Green’s functions appearing in (51) and (52) can be easily evaluated in the HF approximation by means of
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the Hamiltonian 3¢_° given by (26). We find
ImQ,f(k,w) = (1/4N) X

q,u
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| ]Ou’ .Mu1(+>(“k)[‘:’mlm(Q)‘I’#'—lm(k _Q) +a’u1~1/2(Q)‘:’n'—1/2(k_Q):|

'H:]OM’,ulu(-)(q)+J0n1,u’u(—)(k“—Q)]d’m——lm(q)‘?’u’—llz(k_q) I 2

Im@,t(kw) = (1/4N) X
A e u
where

ka(w)_*']oﬂ',mu(_)(Q) +J o wu T (K—q) ‘ 2 ImG_*(quy, k—qu’; o),

(54)
(55)

X [ow—(k—q)wu—(Q) ™ ImG_*(qu1, k—qu’; w),

Kk(w) = (W/Z)Ak(w)[‘:’u11/2~(Q)°-’u’—1/2(k_(l) +‘:’u1—1/2(q>&’u’—1/2(k_q):l/wul-l/2(Q)wu'—1/2(k_q) y

[wu—(q)+oww—(k—q)]

2
G—’(Qﬂly k-ql‘,§ "-’) = _<("Iqu17+77k~qu’—>

™

w?—[wu-(q) +wﬂ’~(k'—q)]2

[wur(Q) —w,,/,(k —Q)]
+ (1x—qu—— qun«\ > : (56)
¥ ! }C"?—[wnl—(q) —wu_(k—q)]?

The function G_*(qu1, k—qu’; w) describes the physical process of Raman scattering of triplet excitons. Its real part
is given by the principal value of (56), while its imaginary part is

ImG_H(qu1, k—qu’; ) = (nqu—~F e—qw—) {80 —wu (@) —0w—(k—q) ]—o{w+wu (@) +w,—(k+q) I}

+ ("k—qu’— - ’7qﬂr) { 5[‘*’ Wy (q)‘!_wu’— (k _q)] - 5[“"*"*’#17 (q) '-wl-l"‘(k _q)]} )

(57)

with g, = coth3Bw,,—(q). The two terms in (57) represent the Stokes and anti-Stokes components of resonance
Raman scattering of triplet excitons. The spectral function for the process in question is described by

7M+t(k7w) + I:w2 Ren2(kyw) - 52k2]’?#+t(kyw)

2ck
T (l) = —(ebe— 1)
™

(58)

[w® Ren*(k,w) —c** PP+[yus ' (Kyw) I

The expressions for v, !(k,w) and 7,,(k,w) are greatly simplified in the case when the exchange interactions ap-
pearing in (54) and (55) are small in comparison with the Coulomb ones and, hence, can be neglected. Then taking
ReQ,, (k,w)~Red, (kw)~w,(k) and retaining only the first term in (55), we have

(R’ ¥%) | = (,/4N) 2 [fowrkaw (=K NAp ] ImG_(qui, k—qu’; w)

[N

d 2
+[f~ Rer?(lw) — 1]wu+<k> IO, (), (592)
w

dw? -11
et (k) = (—_ Ren(k,w)— 1) — 2 i (Qw) Ay IMG_H(qu, K—qu’; w)
dw? 8N ¢

with

aku+(‘~l:w) =20,* Z fqulyk—-qu’(_k7 A)/[“’L“ e,,+2(k,w):| .

u1,u’

The first terms in (592a) and (59b) result from the first
term of (55) and represent the radiative transition be-
tween the states (q, u1—) and (k—q, u’—) through the
exchange of the photon (k,\). The second term in (59a)
arises from the correlation between the electromagnetic
field and the intermolecular interactions, while the corre-
sponding term in (59b) has pure intermolecular char-
acter. A further approximation can be made in (59) by
replacing €, (k,w) by its unperturbed value w, (k).
The maximum frequency vk,, and the spectral width
for the spectrum of (58) are expressed by (46) and (49),
respectively, with y=7v, ' (Kye,) and =9 (kpy,)
determined by (59), provided that the frequency »y,
satisfies the arguments of the § functions appearing in

+Fout (B) Leu *(k,w) —w? ]~ Im, f(kyw),  (59b)
(59¢)

7), ie.,
Vo= £ [0 (QFow—(k—q)]. (60)

In writing (60) we have discarded the second term in
(57), because it is practically zero even at elevated tem-
peratures. The relation (60) indicates that the polariton
vk, decays into two triplet excitons with energies w,,(q)
and w,_(k—q), respectively; the inverse process also
holds, where two triplet excitons with energies w,,(q)
and w,—(k—q) recombine to form the polariton vx,. The
two terms in (59a) are proportional to the square and
sixth power of the electronic charge, respectively, and
hence, the first term dominates. The multiplicative
factor, [(dw?/dw?)n?(kw)—1], in the second term, indi-
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cates that there is an enhancement in the damping func-
tion whenever, for a given frequency,

(des?/dw?) Ren?(k,w)>2.

In view of (60), the enhancement occurs when the fre-
quency o= vy, = wu,—(qQ)+ww_(k—q) is close to the fre-
quency e, (k,vi,) or approximately to its unperturbed
value w,y (k). The same conclusion was derived by Knox
and Swenberg!* in their qualitative treatment of the
physical process leading to the second term in (59a). The
limiting case when the frequency w,,(q)+w.—(k—q)
becomes exactly equal to w, (k) will be dealt with in
Sec. IV C.

C. Bare Exciton Field

In the range of wave vectors k, where retardation
effects may be neglected, the spectral function for the
bare exciton field is

Sz (kyw) = —2(efo— 1)~ Img,y " (k)

=<§> Refl s () (e — 1)

v

I‘l‘:t (krw) + [wZ - eﬂiz(kaw):lf#:t (k}w)

, (61)
[0 — €us*(k,0) PP+ [ Tus (kyw) P
where
Ly (kw) = Reyr (k,w) Tm&, (kw)
+R€Q“:{:(k,w) Imﬁ#ﬂ:(k7w) ) (62)
F#:!:(kaw) = Imﬁ#ﬂ:(k7w)/ReQM:E(k7w) ’ (63)

and e, (k,w) is given by (41b). In deriving (61), we have
made use of (32), in the limit when retardation effects
are discarded, as well as the expression (33). The excita-
tion spectrum of single excitons has been examined in I.
If we identify O, (K,0)= 81 (), Qur (B,w)= 1, P (w),
and ImQ,, (k,w)=Imé&,,."(w), when contributions from
the triplet exciton field are neglected, then the corre-
sponding expressions are described by the equations
(59), (60), and (66), (93) of I, respectively, and have
been discussed in detail; we refer to I for details. The
presence of the terms corresponding to the triplet
exciton field will result in enhancing the self-energy of
the singlet exciton provided that they are not in reso-
nance. They become important for the physical process
when a singlet exciton decays into two triplet excitons.
The spectrum, for the process in question, is described
by the spectral function (58) in the limit when retarda-
tion is neglected, i.e.,

2
Jﬂ+t(kyw) == Re§M+(k:w) (6(%: - 1)‘1
™

I‘u+t(k)w) + [wZ - €M+2(k7w)]f‘ﬂ+t(k)w)
X P _

[w2 —eui (k) ]2+ [PH—t(k;w)]z

4 R. S. Knox and C. E. Swenberg, J. Chem. Phys. 44, 2577
(1966).

, (64)
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where

Ty (k) =70, (K,0)
= Reﬁﬂ+ (kiw) ImQM+t(k;w)
+ Re§#+ (k:w) IleH-t (k;w) H (65&)

fﬂw‘-t(kaw) =7p,u1'(Kw)
= Imﬁu+l<k)w)/ReQ#+(k>w) » (65b)

and the expressions for Im@, .!(k,w) and Im%,, (k,w) are
determined by (54) and the second and third terms of
(55), respectively. The condition for T *(Kpiut)
=T,;5%0 and T, '(Kpi,)=T,4520 requires that the
equation

Vept-= i[wul—(q)+wn’~(k—q)] s (66)

must be satisfied, where the maximum frequency v,y is
determined by

Vku+2_€u+2(k;”ku+)

= (Cu | w1/ A+ 1], (67)

The relation (66) implies that the singlet exciton v, (k)
decays into two triplet excitons w,, (q) and w.—(k—q).
The inverse process is also applicable, where two triplet
excitons annihilate to form a singlet exciton. If the fre-
quency v, (k) satisfies Eq. (66), then the spectral func-
tion J,..t(k,w) consists of the superposition of symmetric
and asymmetric Lorentizian lines peaked at the maxi-
mum frequency w=ipur, and J . (K,vi,y) is given by

TS (Bviur) = ReQyy (Kpiuy) (&Pt —1)7
X (0 Tu) [ 1=V (14T )T, (68a)
while the half-width of the absorption band is of the

order of

Vth(Vku-l-) = (I‘n+/fu+2)|.__”' 1i\/(1+ f‘2)]/
ReQuy (Kiur) -

If we compare the second terms of (59) with the corre-
sponding functions T, !(k,w) and T', !(k,w), in the same
approximation, we have

(68b)

2

Dy () | Ty ) ] (;%n?(k,w) —1) (69)

ReQyi'(kw)

eut*(Byw) —o?

[w(k,w)lm(k,wuz( )>1. (10)

The expression (69) indicates that the ratio v, ‘(k,w)
X | Tuit(k,w) depends entirely on the value of the
polarizability for a given frequency, while 7,!(k,w)
>T1,(kw). Therefore, for crystals for which the
polarizability for a given frequency takes the value
a(k,w)>1 or n2(k,w)>2, then v, t(k,w)> Ty tk,w).

V. EXCITATON SPECTRUM OF
TRIPLET EXCITONS

We shall now examine the excitation spectrum arising
from the Green’s function g, (k,w). Its spectral function
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is described by (61) while I',_(kw) and ', (kw) are
given by (62) and (63), respectively. The expressions for
Q,—(kw) and 3, (kw) involve the Green’s functions
(($u-(k); ¢u-T(k))) and ((6,—(k); 6, (k))), respectively.
Inspection of (17) and (18) shows that the Green’s
functions in question contain not only operators of the
triplet exciton field, £, (k—q), X,_(k—q), but also
photon operators, 5\(q), as well as operators of the
singlet exciton field £, (k—q), X,(q). To calculate the
Green’s functions ((¢,_(k); ¢.—'(k))) and

{0u—(k); 0”_1‘ &)

we have first to transform the operators f(q), £..(q),
and X, (q), respectively, into polariton operators {,(q).

2

(k) = [w <f o (q,p)AMrukq>"2
\/LV Q6’10

wp(q)
2@M1+(Q)xq
wp(q)

—%]OM’,MMI(—)(_k)(
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The transformation is achieved via the relations

Brk) =% [eche|wp () 1[0, (B)+8,1(—K)],  (7T1a)
Eur(B) =12 [20u1 (B)Ne| w0, (1) ¢ (k) 81 (k) ], (71D)

X (K) =13 [20 (k)N | @y (B) ]V (k) —¢ T (k) ], (71c)

dw? -1 )
)\k=<——n2(k,w)> y >\k=1_>\k (71d)
dO.)2 w=w, (k)

In deriving (71) use has been made of the relations given
in Ref. 10. Substituting (71) into the expressions (17)
and (18), we find

1/2
) sz—(k—q)[s“p(q)+s°p*(—q)]

—(’i/Q\/N) 2 []OM’,M1M(+)(q)+]0u’vmu(‘)(_k)'i']ﬂm,u’n(w)(k"Q)]

qm 01,0

Jiie—aw (©p) BN
w,(q)

b ()= \j’ > (

N a.w 0

20),,((1)5\‘1

Y Z []Ou’,ulu(+)(q)+Ak(w)](f_——
2V N doutn’ o wu+(q

24/ N apiu’ e

Y [VowwsT (B—q)+Ak(w)]

Deoo(@Re 1
><<ﬁ q-) Xy (k=L o) ¢, (—)], (72)

wu+\q

) X (k= @)+, (— )]

1/2
) £ (k—Q)[6 (@) 55 (— )]

2d’m+(q,))_\q 1
<__(_)__> X (K~ Q)+~ (73)

wp(q

We calculate now the Green’s functions ({¢,_(k); ¢,_(k))) and {(8,—(k); 6,_(k))) in the HF approximation by

means of the polariton Hamiltonian (31b). The result is

(u-(k); dut(k)))°=(1/4N) 2

q,u1,4",p

(Bu—(k); 6,1 (k)))°=(1/4N) 22

q,u1,8",p

IQ(q) Py K15 k_q; /“‘/) i 2G<qp7 k_QM'S w) )

|Q(q7 Py M1; k—QM/) ! 2G(QP: k“‘l#’} w) )

(74)

(75)

where the coupling functions Q(q, p, u1; k—q, &) and 0(q, p, p1; k—q, u') are

2 fuwi—aw (@0) A ihg@p—(K—q)

Q(q) ) l;k—q: /)z.wp(
e w o (k—q)es,(Q)

— i Tow ,uin (@ +T 01,06 T (K "‘D](

_iJOul,u’u(E)(_k)iq1/2[<

)1/2

@n"(k—Q)wp(Q)i\qy/?
wu—(k— Q)du+(q)

wﬁ‘;‘vw_@_>/] . (70)

O (@@ (E—q)\ /2
=
wp—(K—Q)0u+(q)

‘*’u’—(k “q)‘*’p(q)
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2 frpi—qu (@,0) Apr i@y — (K —q)
ww—(k—q)w,(q)

1/2
Q(‘L P, u1; k—q, l"’) =i‘*’p< ) _’i{[JOu’,ulu(+)(q) +Ak(w):]“’p(q)w#’-—(k_Q)

+[J0u1.u’u(~)(k_q)‘;’u&(q)d\’u’ (k _Q)]}<

and the function G(qp, k—qu’; ) is given by

G(qp: k“l#'; w)

2
= —((’Tq ot ﬂk—qu’—)

w

[‘*’p(q) +wy ’—(k —Q)]
w'—[w,(q)+ww—(k—q)]

wo(q) —wu—(k—
[ws(q) (k—q)] ) 78)
wl— Ewp(q) —wp(k _Q):P

+ (nk—qu’—_ Nq ﬁ)

The function G(qp, k—qu’;w) describes the Raman
scattering of the polariton w,(q) and the triplet exciton
ww—(k—q). Its real part is given by the principal value
of (78) while its imaginary part is

ImG(qp, k—qu’; »)
= (ngpt Mie—qu) {8 —w,(q) —w (k—q) ]
—dlw+tw,(@)+wr—(k—q) 1}
+ (Mg — ﬂqp){a[“’ —w,(Q)+ww(k—q)]

— 8ot (@) —wp(k—q)J}. (79)

In the expressions (74)—(78) the dispersion of the scat-

tered polariton w,(q) is fully included. Substituting (74)
and (75) into (62) and (63), we obtain

1
I‘u—(k,w)=4—~ 2 [6n-(®)[0(, o', s k—g, 1) |?

N a,u" p1,0
+ou (k)| Q(q, ', 11; k—q, #)|*]
XImG(gp, k—qu’; ), (80)
Iy (kw)=[1/4Nw, (k)]

X 2

q,u k1P

|0, p, p1; k—q, ) |?
XImG(qp', k—qu’;0), (81)
€ 2(K,w) = w,_2(K)+(1/2N)

X X [6.(k)|Q(, p, p1; K—qu’) |2

O R R, P
+‘I’M—(k) I@(qn Py M1, k_(L /J’,) l 2]

XReG(gp', k—qu'; ). (82)

A& (k—q)

1/2
, (17)
Our (Qwp(Quw -3k —Q)>

The spectral function J, (k,w), for the process in
question, is

2
]M—(k)w) = ":’u—-(k) (eﬁw— -t

™

I‘ll’-(k:w) + [w2 - 6#—~2(k1w)]f‘#—(kaw)
[0 — e 2(k,w) Ty (ky) 2

(83)

The maximum frequencies vk, at which the function
Ju—(k,w) is peaked are determined by the expression

Vi — € (R vicu—)

= (I‘MA/f‘u—)['— 13&\/(14_ f‘u~2)] ’

with T,o=T\_ (K pip_), ['ue(Kpie—), and e, (Kpi,—) con-
sidered as constants. In order to have T, (kpy, )0
and I',_ (K., )0, and taking into account that the
last term in (79) contributes nothing, the frequency
viw— Must satisfy the equation

(84)

viw—= == [wp(@)Fwp—(k—q) ]. (85)
Equation (85) implies that the triplet exciton vy, de-
cays into the triplet exciton w,—(k—q) with the emis-
sion or absorption of the polariton w,(q). If the relation
(85) is satisfied, the spectral half-width for the process
in question is of the order of

Wi(vgu-) = (PM—/f‘u~2)[" 114 f‘n—2)]/‘*’#~(k) . (86)

Then the first term in the coupling functions (76) and
(77) describe the radiative transition between the
states (k, u—) and (k—q, u—) via the exchange of the
polariton w,(q) and is proportional to the square of the
electronic charge. The second terms arise from the
correlation between the intermolecular interactions and
the polariton field; considering the factor A, these
processes are proportional to the sixth power of the
electronic charge. The third term in (77), Ax(w), repre-
sents the small radiative correction to the triplet state
(k, u—) arising from its indirect interaction with the
electromagnetic field with frequency ck. It is easy to
show that for w?—c%2—w,?=0 the Green’s function
g, (k,w) becomes zero, which indicates that at these
frequencies g, (k,w) has no poles.

In the range of wave vectors ¢ where the dispersion
of the scattered photon ¢g can be neglected, the expres-
sions (80) and (81) for I',_?(k,w) and T',_t(kw) are re-
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duced to

2N aa.w
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wp® Apry
Iut(kw)=— 3 fku,k—qu'(%)\)“‘—“*)[@uu(k—Q)d’u—(k)-f"@w—(k—Q)@n—(k)] ImG(eq, k—qu’; )

cqwp—(k—q

1
+— X t]Ou’,mu(+)(Q)+2~,0u1,u'u(_)(_k) FJ o wre T (K—q) | 20 (b (E—q)du—(k)

4N q.u
ou—(k)

+ | [JOM’.ulu(+)(q) +Ak(w)]‘:’#’—(k"'q)‘:’ul+(q)

‘:’u’—(k _q)‘?’ﬂﬂ-(Q)

F[Joprwu T (k—q) +Ak(w)]‘?’ﬂ’(k—Q)‘:’u1+(Q) 1 2} [wut(Qww—(k—q) T ImG(qus, k —qu';w), (87)

Au'u‘:’#’ (k—Q)

N wy?
Fptkw) = ——— 2 fiuraw(@)N)

Nowu—(K) ahw! —q)

cquw—(k

A2 010w () +T 0w T (K —q) ! 2(“

where G(cq, k—qu'; w) and G(qui, k—qu';w) are ob-
tained from (78) by replacing w,(q) by c¢q and w,,.(q),
respectively. In (87) and (88), the first term represents
the radiative interaction between the two triplet exci-
tons (k, u—) and (k—q, u'—) through the exchange of
the photon (g,)\), while the remaining terms, with the
exception of Ax(w), correspond to the instantaneous in-
termolecular interactions leading to the creation of two
excitons: the singlet w,,(q) and the triplet w,_(k—q).
The necessary conditions for ImG(cq, k—qu’; vy,_) %0
and ImG(qui, k—qu’; v, )20 are

vi—=E[cqt oy (k—q)], (89)
Virp—= -——t["-’n1+(q)+‘-"ﬂ’-—(k—q)]; (90)

respectively. The maximum frequency wy,_ is deter-
mined by the expression (84) with I',_ and T',_ given by
(87) and (88). The relations (89) and (90) indicate that
the triplet exciton vy, decays into the state (k—q,u’—)
with the simultaneous emission or absorption of the
photon (g,\) and the singlet exciton (q,u1+), respec-
tively. The spectral width for the triplet exciton (k, u—)
is determined by (86) if I',_(k,w) and I',_(k,w) are re-
placed by T,_?(k,w) and I',_?(k,w), respectively.
Far from resonance, i.e., in the limit when

ImG(qp, k—qu'; w)
goes to zero, the spectral function (83) becomes
S (B yw) =20, (k) (6P —1)718(w? =€), (91)

where the energy of excitation e, is determined by the
solutions of the equation

eeu"= 0y (K, €10 Qu— (K, €xu—) (92)

1
——ImG(eq, k—qu'; )+ ———— T

| Tour, (q)
4Nw, (k) a.p'.m B

(:’Ml+(q)éll'“(k —(1)
————— ) ImG(qui, k—qu’; ), (88)
wﬂ1+(q)wﬂ'*<k-—q)> " <q ’

with
O (K, exu) =0, (k) +(1/4)
X Z lQ(q,p7 I‘l;k_qr :U'I)I‘z
Gu 81,0
XG(qp, k—qu’; exu), (93)
G (K, €) =0, () (1/4X)
X Z fQ(q,P; Ml;k_q, ”,)‘2
.m0,
XG(gp, k—qu'; exu) . (94)

The last terms in (93) and (94) represent the scattering
amplitudes for the scattering process, where the triplet
exciton ey, undergoes the transition into the state
wu—(k—q) while the polariton w,(q) is emitted.

VI. CONCLUSION

A systematic approach is presented for the study of
the dynamics of interacting polariton-exciton fields
caused by photon absorption in molecular and insulat-
ing crystals. Emphasis has been given to the line shape
of the absorption bands at low temperatures. The dy-
namical behavior of the absorption bands at elevated
temperatures will be mainly determined by the polari-
ton-phonon, exciton-phonon, as well as polariton-
exciton-phonon interactions.?:3 The derived results in
the present study need the support of numerical compu-
tations for comparison with the observed data.

It is hoped that the present study will stimulate an
interest in performing resonance triplet exciton Raman
scattering experiments in organic solids at low tempera-
tures and computations as well.



